(6) Interpreting leaf analysis

Steven Falivene (NSW Department of Primary Industries)

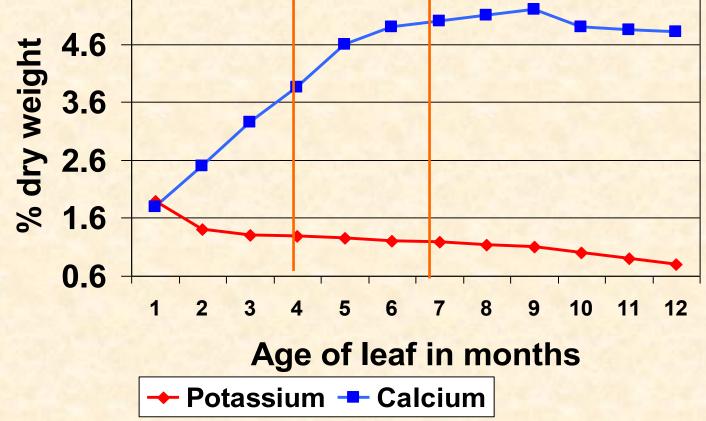
NSW DEPARTMENT OF PRIMARY INDUSTRIES

Interpretation

- Only a guide
 - Best tool for showing what nutrients are getting into the tree
 - Increased power of data by comparing trends from numerous years

 Developed in USA by conducting many tests on blocks & research trials (1940s +)

Why 4-6 month age leaf Percent nitrogen for Age of leaves


(After Embleton, 1973)

Why 4-6 month age leaf

Percent Potassium & Calcium for

Leaf analysis interpretation

- Need to make sure correct age of leaf picked
 - Calcium is a good indicator high Ca old leaf, low Ca young leaf
 - Further supporting evidence from N & K leaf levels

Other factors

- Rootstock will affect nutrients
 - Trifoliate accumulates Cl
 - More of an effect on micro nutrients than macro (Smith et.al. 1948)
 - i.e. Citrange and Tri have less Zn & Mn than Cleo

 Keep in mind nutrient antagonism to help explain possible irregularities

Navel Leaf Analysis Interpretation chart

Updated ranges in **bold red**

Element	Deficient range ^(a)	Low range	Satisfactory range	High range	Excess range	
		As percentage of dry matter of leaf				
Nitrogen ^(b)	Below 2.20	2.20– 2.5	2.5–2.9	2.9–3.1	Above 3.1	
Phosphorus	Below 0.10	0.10–0.13	0.14–0.16	0.17–0.30	Above 0.30	
Potassium	Below 0.40	0.40– 1.1	1.1–1.50	1.5–2.00	Above 2.00	
Calcium	Below 1.60	1.60–2.90	3.00–5.50	5.60–7.00	Above 7.00	
Magnesium	Below 0.16	0.16–0.29	0.30–0.69	0.70–1.00	Above 1.00	
Sodium			Below 0.16	0.16–0.25	Above 0.25	
Chlorine			Below 0.30	0.30–0.60	Above 0.60	
Sulphur	Below 0.14	0.14–0.19	0.20–0.39	0.40–0.50	Above 0.50	
	As mg/kg (parts per million) dry matter of leaf					
Manganese ^(c)	Below 16	16–24	25–100	100–300	Above 300	
Zinc ^(c)	Below 16	16–24	25–100	100–200	Above 200	
Copper ^(c)	Below 3	3–5	6–15	16–20	Above 20	
Boron	Below 21	21–30	31–129	130–260	Above 260	

Interpretation

- Recommended to conduct a separate round table workshop looking a leaf analysis results
- Booklet of interpretation guide is on the ACG website
- Separate "Which leaves to pick?" workshop
 - www.australiancitrusgrowers.com
 - resources

References

- Bevington K, P. Florissen, A. Gee, S. Falivene. 1998. Improving imperial mandarin fruit quality and marketability. Horticulture Australia Final report CT95031.
- Chapman JC. 1982. The effect of potassium and nitrogen fertilizers on the yield, fruit quality and leaf analysis of Imperial mandarins. Australian-Journal-of-Experimental-Agriculture-and-Animal-Husbandry., 22: 117, 331-336
- Embleton TW.1973. Leaf Analysis as a diagnostic tool and guide to fertilisation. Citrus Industry Vol 3, chapter 6
- Embleton TW., WW Jones, CK Labanauskas. 1962. Sampling orange leaves leaf position important. Californian Citrograph, September. 17: p382,396
- Falivene S. Citrus crop nutrient accumulation rates. NSW DPI fact sheet
- Guardiola J.L, M Chulia, J Sancho. 1984. The accumulation of mineral elements in the leaves of Clementine Mandarin is related to position. Proceedings International society of Citriculture, Vol 1, p220
- Harding RB, TM Ryan, GR Bradford. 1962. A comparison of macro element composition of orange leaves from non fruiting and fruiting terminals. Proceedings American Society for Horticultural Science, V80, 255-258
- Kallsen C. 2002. Fall leaf tissue samples important for maintaining citrus growth, fruit quality and yield. UC Davis Extension article. Kern County.
- Smith PF, Reuther W, Specht AW. 1947. The influence of rootstock on the mineral composition of Valencia orange leaves. Plant Physiology, p 455-461